

DESIGN SITUATIONS

BRACING SYSTEMS ARE USED IN ORDER TO REDUCE THE LATERAL DISPLACEMENT

AS A RESULT OF THE ABOVE:

- BRACED COLUMNS
- UN-BRACED COLUMNS

THE ENDS OF THE COLUMNS CAN HAVE DIFFERENT TYPES OF CONNECTIONS WITH NEIGHBORING ELEMENTS:

- RESTRAINED DISPLACEMENTS & ROTATIONS (AS FOUNDATIONS)
- PARTIALLY FREE DISPLACEMENTS & ROTATIONS DEPENDING ON:
 - stiffness of neighboring elements
 - with or without bracings
- FREE DISPLACEMENTS & ROTATIONS

DEFINITIONS

First order effects - M_{0Ed} : action effects calculated without consideration of the effect of structural deformations, but including geometric imperfections

Second order effects - UM: additional action effects caused by structural deformations

Second order moment - $M_{Ed} = yM_{0Ed} (y > 1,0)$: bending moment, taking into account the influence of structural deformations

The second order effects are produced by two types of deformations:

Lateral deformations of the story:

- depends on the structural stiffness,
- characteristic for unbraced structures

Individual deformations of the element:

- depends on slenderness & neighboring elements
- characteristic for braced structures
- may cause buckling

Buckling: failure due to instability of a member or structure under perfectly axial compression and without transverse load

Buckling load: the load at which buckling occurs; for isolated elastic members it is synonymous with the Euler load

Effective length: a length used to account for the shape of the deflection curve; it can also be defined as **buckling length**.

Isolated members: members that are isolated, or members in a structure that for design purposes may be treated as being isolated

8.1. GEOMETRIC IMPERFECTIONS

8.2. SECOND ORDER EFFECTS WITH AXIAL FORCE

8.3. COLUMNS WITH RECTANGULAR CROSS SECTION

8.4. BIAXIAL BENDING OF COLUMNS WITH RECTANGULAR CROSS SECTION

8.5. CIRCULAR/RING-SHAPED COLUMNS

8.6. DETAILING OF COLUMNS

The unfavorable effects of possible deviations shall be taken into account in the analysis of members and structures.

Deviations:

- cross section dimensions
- geometry of the structure
- position of loads

Deviations in cross section dimensions:

- are normally taken into account in the material safety factors
- these should not be included in structural analysis
- for cross section design it is necessary to assume the minimum eccentricity, e₀ = h/30 but not less than 20 mm where h is the depth of the section

Deviations in the geometry of the structure:

- shall be taken into account in ultimate limit states in:
 - persistent design situations
 - accidental design situations
- need not be considered for serviceability limit states

IMPERFECTIONS MAY BE REPRESENTED BY AN INCLINATION

 $\theta_i=\theta_0\alpha_h\alpha_m$

 $\theta_0 = 1\!/200\,$ - basic value

- a_h is the reduction factor for length or height:
- $\alpha_{\rm m}$ is the reduction factor for number of members:
- I is the length or height [m], see (4)
- m is the number of vertical members contributing to the total effect

 $\alpha_{\rm h} = 2/\sqrt{I} \ ; \ 2/3 \le \alpha_{\rm h} \le 1$ $\alpha_{\rm m} = \sqrt{0,5(1+1/m)}$

UNBRACED STRUCTURE

8.2.1. TOPIC OF SECOND ORDER EFFECTS

First order effects - M_{0Ed}: action effects calculated without consideration of the effect of structural deformations, but including geometric imperfections

Second order effects - UM: additional action effects caused by structural deformations

Second order moment - $M_{Ed} = yM_{OEd} (y > 1,0)$: bending moment, taking into account the influence of structural deformations

ELEMENT SENSITIVITY TO SECOND ORDER EFFECTS DEPENDS ON SLENDERNESS RATIO

$$\begin{split} \lambda = & \frac{\ell_0}{i} \\ \ell_0 & \text{- effective length} \end{split}$$

i - radius of gyration

THERE ARE 3 CASES OF COLUMN FAILURE DEPENDING ON SLENDERNESS RATIO

Short columns } ½ 35

- negligible second order effects
- bending moment is proportional to the lacksquarelongitudinal force \rightarrow line a
- element failure is produced by \bullet exhaustion of bearing capacity to a force equal to N_{Rd}^{a}

Slender columns **35** < } ½ **120**

- important second order effects
- bending moment increases faster than longitudinal force \rightarrow curve b
- element failure is produced by exhaustion of bearing capacity to a force equal to $N_{Rd}^b < N_B^b$ • N_B^b - is the buckling force

Very slender columns } > 120

- buckling occurs at the force N_{B}^{c}
- deformations increase indefinitely under constant force
- in this case bearing capacity $N^c_{\,{\bf R}\,{\rm d}}=N^c_{\,{\bf R}}$

(1707 - 1783)

- Euler formula for buckling load of isolated columns

a) double pined column in braced structures; not suitable in seismic areas

- b) column in one level unbraced precast structure
- c) column in one level braced precast structure

d) double fixed column in braced structure; bottom end = foundation !; top end = very stiff girder ?

e) case d in braced structure

f) column in braced structure; node rotation is possible

g) foundation rotation of case b

Unbraced structure: - lateral deformations - node rotations Double fix column & free lateral deformations

Real column

Braced columns
$$l_0 = 0,5l \cdot \sqrt{\left(1 + \frac{k_1}{0,45 + k_1}\right) \cdot \left(1 + \frac{k_2}{0,45 + k_2}\right)}$$

Unbraced columns $l_0 = l \cdot \max\left\{\sqrt{1 + 10 \cdot \frac{k_1 \cdot k_2}{k_1 + k_2}}; \left(1 + \frac{k_1}{1 + k_1}\right) \cdot \left(1 + \frac{k_2}{1 + k_2}\right)\right\}$

 k_1 , k_2 are the relative flexibilities of rotational restraints at ends 1 and 2 respectively: $k = (\theta/M) \cdot (EI/I)$

- $\theta = (\theta / M)^{\circ} (E / I)^{\circ}$ Static analysis $\theta = (\theta / M)^{\circ} (E / I)^{\circ}$ Static analysis
 is the rotation of restraining members for bending moment M; \leftarrow is required
- EI is the bending stiffness of compression member,
- I is the clear height of compression member between end restraints

Alternative procedure for **k** in case of braced frame

 $k = \frac{\left(EI/\ell\right)_c}{\sum 2\left(EI/\ell\right)_b} \ge 0,1 \quad \begin{array}{c} \mathsf{c-considered\ column} \\ \mathsf{b-adjacent\ girders\ at\ the\ top\ \&\ bottom\ column\ ends} \end{array}$

PRELIMINARY ASSESSMENT:
$$\ell_0 = \beta \cdot \ell$$

Top	Bottom end condition				
end condition	1	1 2			
	Braced fran	nes			
1	0,75	0,80	0,90		
2	0,80	0,85	0,95		
3	0,90	0,95	1,00		
U	Inbraced fra	mes			
1	1,2	1,3	1,6		
2	1,3	1,5	1,8		
3	1,6	1,8			
4	2,2	-	14		

- 1 fixed to foundation; monolithically connected to a beam $h_b \ge h_c$
- 2 connected to a slab; monolithically connected to a beam $h_b < h_c$
- 3 connected to simple supported beam
- 4 unrestrained

For members with varying normal force and/or cross section

$$\ell_0 = \pi \sqrt{EI_{repr} / N_B}$$

 EI_{repr} – representative stiffness N_B – buckling load calculated by appropriate software or numerical methods

 $\frac{M_{0Edqp}}{M_{0Ed}}$

8.2.2. CREEP INFLUENCE

 $\mathbf{1}^{\text{ST}}$ order bending moment: $\mathbf{M}_{0Ed} = \mathbf{N}_{Ed} \mathbf{e}$

2nd order bending moment without creep influence:

 $M_{Ed} = M_{0Ed} + N_{Ed}\delta$

2nd order bending moment with creep influence:

$$M_{Ed\phi} = M_{0Ed} + N_{Ed} (1 + \phi) \delta$$

The duration of loads may be taken into account by: $\varphi_{ef} = \varphi(\infty, t_0) \frac{M_{0Edqp}}{M_{0Edq}}$

- calculated for section with maximum bending moment or

- a representative mean value

8.2.3. SIMPLIFIED CRITERIA FOR SECOND ORDER EFFECTS

Second order effects may be ignored if they are less than 10 % of the corresponding first order effects

8.2.3.1. Slenderness criterion for isolated members

Second order effects may be ignored if $\lambda \leq \lambda_{\lim}$

 $\lambda_{\lim} = 20 \text{ABC} / \sqrt{n}$

 $\begin{array}{ll} A &= 1 / (1 + 0, 2\varphi_{ef}) & (\text{if } \varphi_{ef} \text{ is not known, } A = 0,7 \text{ may be used}) \\ B &= \sqrt{1 + 2\omega} & (\text{if } \omega \text{ is not known, } B = 1,1 \text{ may be used}) \\ C &= 1,7 - r_{m} & (\text{if } r_{m} \text{ is not known, } C = 0,7 \text{ may be used}) \\ \varphi_{ef} & \text{effective creep ratio;} \\ \omega &= A_{s}f_{yd} / (A_{c}f_{cd}); \text{ mechanical reinforcement ratio;} \\ A_{s} & \text{is the total area of longitudinal reinforcement} \\ n &= N_{Ed} / (A_{c}f_{cd}); \text{ relative normal force} \\ r_{m} &= M_{01}/M_{02}; \text{ moment ratio} \\ M_{01}, M_{02} & \text{are the first order end moments, } |M_{02}| \ge |M_{01}| \end{array}$

}_{lim} based on accepted simplifications for coefficients A, B & C

Column:	Unbraced	Braced					
Bending moment diagram	J	Transverse force M ₀₁ & M ₀₂ predominant effect of geometric imperfections	$M_{01} = M_{02}$	¢		M_{02} $M_{01} = M_{02}$	
С		0,7		1,7		2,7	
λ_{lim}	$10,78/\sqrt{n}$			26,20/√n		41,60/√n	

8.2.3.2. Global second order effects in buildings

Global second order effects in buildings may be ignored if

$$F_{V,Ed} \le k_1 \cdot \frac{n_s}{n_s + 1,6} \cdot \frac{\sum E_{cd} I_c}{L^2}$$

- F_{V,Ed} is the total vertical load (on braced and bracing members)
- *n*_s is the number of storeys
- L is the total height of building above level of moment restraint
- E_{cd} is the design value of the modulus of elasticity of concrete, see 5.8.6 (3)
- *I*_c is the second moment of area (uncracked concrete section) of bracing member(s)
- $k_1 = 0,31$
- $k_1 = 0,62$ if it can be verified that bracing members are uncracked in ultimate limit state

Previous expression is valid only if all the following conditions are met:

- torsional instability is not governing, i.e. structure is reasonably symmetrical
- global shear deformations are negligible (as in a bracing system mainly consisting of shear walls without large openings)

- bracing members are rigidly fixed at the base, i.e. rotations are negligible
- the stiffness of bracing members is reasonably constant along the height
- the total vertical load increases by approximately the same amount per storey

8.2.4. Methods of analysis

General method based on nonlinear analysis EC2 – 5.8.6

Method based on nominal curvature

Method based on nominal stiffness

Last two methods are simplified solutions.

There is the possibility of the second order static analysis (nonlinear static analysis) based on nominal stiffness. Efforts resulting from this calculation include second order effects.

8.2.4.1. Method based on nominal curvature

Method is suitable for isolated columns with constant N_{Ed} and defined l_0

Second order effects depends on element deformed shape Maximum deflection e_2 depends on curvature 1/r in the moment of failure 1/r depends on N_{Ed} & creep

CURVATURE

For members with constant symmetrical cross sections, including reinforcement:

 $1/r = K_r K_{\phi} \cdot 1/r_0$

 K_r – correction factor for axial load

- K_ϕ correction factor for creep
- $1/r_0$ maximum curvature corresponds to balance situation (maximum bending moment)

Correction factor K_r

Higher N_{Ed} smaller curvature 1/r

Correction factor $K_{\{}$

$$\begin{split} & K_{\phi} = 1 + \beta \phi_{ef} \geq 1,0 \\ & \beta = 0.35 + f_{ck} / 200 - \lambda / 150 \\ & \lambda = \frac{\ell_0}{i} \quad \leftarrow \text{slide } 14 \\ & \phi_{ef} = \phi(\infty, t_0) \frac{M_{0Edqp}}{M_{0Ed}} \quad \leftarrow \text{slide } 24 \end{split}$$

BENDING MOMENTS

$$M_{Ed} = M_{0Ed} + M_2$$
 (*)

 $M_2 = N_{Ed}e_2$

 $\mathbf{e}_2 = \left(1/r\right)\ell_0^2/c$

c - factor depending on the curvature distribution; for constant cross section: $\pi^2 \approx 10 -$ for sine-shaped distribution of curvature 8 - for constant curvature distribution (constant bending moment)

$$1/r$$
 – curvature \leftarrow slide 32

 l_0 – effective length \leftarrow slides 18 ... 23

The meaning of relation (*) is the summation of M_{0Ed} diagram with M_2 diagram. The resulting diagram allows for the maximum bending moment.

 1^{st} order bending moment \rightarrow linear diagram; maximum value at the column ends

 2^{nd} order bending moment \rightarrow sine-shaped diagram between inflexion points

Braced columns

Different first order end moments M_{01} and M_{02} may be replaced by an equivalent first order end moment M_{0e}

 $M_{0e} = 0,6M_{02} + 0,4M_{01} \ge 0,4M_{02}$

 M_{01} and M_{02} should have the same sign if they give tension on the same side, otherwise opposite signs. Furthermore, $|M_{02}| \ge |M_{01}|$.

Maximum 1st order bending moments occur at the element ends The maximum 2nd order bending moment occurs at about mid-length of column Therefore it is possible that the maximum bending moment is no longer at the element ends

In such cases, the design bending moment is defined by:

$$M_{Ed} = max(M_{02}; M_{0e} + M_2; M_{01} + 0,5M_2)$$

Unbraced columns

Lateral displacements may be generated by:

- asymmetry of the structure;
- horizontal seismic or wind forces.

All columns have the same mode of deformation due to high stiffness of reinforced concrete floors.

Therefore, it is reasonable to use an average curvature, even though the columns may have different rigidities.

Maximum 2nd bending moment occurs at that end of the column which has the highest stiffness.

Addition of 2nd bending moment to 1st bending moment

For the same rigidity at the both ends of column addition is done to the maximum 1^{st} bending moment

For different rigidities of column ends the addition is done as follows:

- to the maximum 1st bending moment (which corresponds to highest rigidity)
- at the opposite end, the additional bending moment may be reduced in proportion to the ratio of the rigidities at the two ends of the column

8.2.4.2. Method based on nominal stiffness

In a second order analysis based on stiffness, nominal values of the flexural stiffness should be used, taking into account the effects of

- cracking,
- material non-linearity
- creep

on the overall behavior.

This also applies to adjacent members involved in the analysis:.

- beams
- slabs.

Where relevant, soil-structure interaction should be taken into account.

The resulting design moment is used for the design of cross sections to bending moment and axial force

NOMINAL STIFFNESS

$$\mathbf{EI} = \mathbf{K}_{c}\mathbf{E}_{cd}\mathbf{I}_{c} + \mathbf{K}_{s}\mathbf{E}_{s}\mathbf{I}_{s}$$

 $\rm E_{cd}\,$ - Design value of the modulus of elasticity of concrete

$$E_{cd} = E_{cm} / \gamma_{cE}$$
 ; $\gamma_{cE} = 1,2$

I_c - moment of inertia of concrete cross section

E_s - design value of the modulus of elasticity of reinforcement

 ${\rm I}_{\rm s}$ - second moment of area of reinforcement, about the centroid of area of the concrete

 $K_s = 1$ - factor for contribution of reinforcement

K_c - factor for effects of cracking, creep, etc.

$$\begin{split} &K_c = k_1 k_2 / \left(1 + \phi_{ef}\right) \ \text{if } \rho \geq 0,002 \\ &\rho = A_s / A_c \ \text{-reinforcing ratio} \\ &A_s - \text{total area of reinforcement} \\ &A_c - \text{area of concrete section} \\ &\phi_{ef} \ \text{-effective creep ratio} \rightarrow \text{slide 24} \\ &k_1 = \sqrt{f_{ck}/20} \\ &k_2 = n \frac{\lambda}{170} \leq 0,20 \ \text{with } \lambda \text{-slenderness ratio} \\ &k_2 = n \cdot 0,3 \leq 0,20 \ \text{if } \lambda \text{ is not defined} \\ &n = N_{Ed} / A_c f_{cd} \end{split}$$

In statically indeterminate structures, unfavorable effects of cracking in adjacent members should be taken into account.

Expressions from slides 45 & 46 are not generally applicable to such members. Partial cracking and tension stiffening may be taken into account according chp. 16.3. *Simplified approach of deflection control*

However, as a simplification, fully cracked sections may be assumed.

The stiffness should be based on an effective concrete modulus:

 $E_{cd,ef} = E_{cd} / (1 + \varphi_{ef})$

Note: Meaning of the text *Fully cracked section* is presented in chp. 16.3

MOMENT MAGNIFICATION FACTOR

The total design bending moment M_{Ed} , including second order effects, may be obtained by increasing M_{0Ed} as follows:

$$M_{Ed} = M_{0Ed} \left[1 + \frac{\beta}{(N_B/N_{Ed}) - 1} \right] \dots (**)$$

 N_{Ed} – design value of axial force

 N_B – buckling load based on nominal stiffness

 β – factor depending on distribution of 1st and 2nd order moments

 $\beta = \pi^2/c_0 - \text{for sine-shaped distribution of } 2^{nd} \text{ order moments of isolated columns}$

 c_0 – factor depending on distribution of 1st order moment:

 $c_0 = 8$ for a constant bending moment

 $c_0 = 9,6$ for a parabolic distribution

 $c_0 = 12$ for symmetric triangular distribution

Where provision for β or c_0 are not applicable, $\beta = 1$ is a reasonable simplification.

Consequently, relation (**) turns into:

$$M_{Ed} = \frac{M_{0Ed}}{1 - N_{Ed}/N_B} = \eta M_{0Ed}$$
$$\eta = \frac{1}{1 - N_{Ed}/N_B}$$

Braced columns

For members without transverse load, different first order end moments M_{01} and M_{02} may be replaced by an equivalent *constant first order moment* M_{0e} (see slide 37).

Depending on slenderness and axial force, the end bending moments can be greater than the magnified equivalent moment ηM_{0e}

Therefore relation (**) from slide 45 is rewritten as follows:

$$M_{Ed} = M_{0e} \left[1 + \frac{\pi^2}{8(N_B/N_{Ed}) - 1} \right] \ge M_{02}$$

 \rightarrow c₀ = 8

Unbraced columns

The same l_0 for all columns because they "work" together due to monolithic floor

Slide 27:
$$\phi_{ef} = \phi(\infty, t_0) \frac{M_{0Edqp}}{M_{0Ed}}$$

Discussion on M_{0Eqp} used for ϕ_{ef} : no horizontal variable loads (e.g. wind, bridge crane) are taken into account because do not induce creep

 $N_{lim} = F_{c} = 0.8bx_{lim}f_{cd} = 0.8\xi_{lim}bdf_{cd}$

 $\Sigma M = 0 \rightarrow$ related to the A_{s1} axis

$$\begin{split} M_{R\,lim} + N_{lim} & (0,5h-d_1) = F_c z_{lim} + F_{s2} (d-d_2) \\ M_{R\,lim} + N_{lim} & (0,5h-d_1) = 0.8b x_{lim} f_{cd} (d-0,4x_{lim}) + F_{s2} (d-d_2) \\ M_{R\,lim} + N_{lim} & (0,5h-d_1) = 0.8\xi_{lim} (1-0,4\xi_{lim}) b d^2 f_{cd} + F_{s2} (d-d_2) \\ M_{R\,lim} & = \mu_{lim} b d^2 f_{cd} + A_{s2} f_{yd} (d-d_2) - N_{lim} (0,5h-d_1) \end{split}$$

TWO WAYS OF FAILURE

 N_{Ed} ≤ N_{lim} → - compressive force with prevailing bending
 - ductile failure due to yield of tensioned reinforcement
 - compulsory in case of seismic areas

N_{Ed} > N_{lim} → - bending with prevailing compression

 brittle failure by crushing of concrete
 without yielding of reinforcement A_{s1}
 (whether it is tensioned or compressed)
 brittle character becomes stronger with the
 increasing of the compressive force

8.3.2. Section analysis

$$x \ge x_y \quad \sigma_{s2} = f_{yd}$$

 $x < x_y - \sigma_{s2} < f_{yd}$

• no yielding of compression reinforcement

- procedure in the chapter 6.4 (slide 12) applies
- simplified approach: F_c is acting at the level of F_{s2}

 $\Sigma F = 0$ $N_{Ed} = F_c + F_{s2} - F_{s1}$ (1) $N_{Ed} = F_c$ $x = \frac{N_{Ed}}{0.8bf_{cd}}$

Let's assume yielding

Case I: $\xi = x/d \le \xi_{lim}$ the same as $N_{Ed} \le N_{lim} \rightarrow A_{s1}$ yields Case II: $\xi = x/d > \xi_{lim}$ the same as $N_{Ed} > N_{lim} \rightarrow A_{s1}$ does not yield

Case I: compression with prevailing bending - A_{s1} yields (eccentric compression with large eccentricity) $\mathbf{x} \mid \mathbf{x}_{v} \models \mathbf{A}_{s2}$ yields $\mathbf{F}_{s2} = \mathbf{A}_{s2}\mathbf{f}_{yd}$ $\Sigma M = 0 \rightarrow$ related to the A_{s1} axis $M_{Fd} + N_{Fd}(0.5h - d_1) = F_c z + F_{s2}(d - d_2)$ z = d - 0.4xslide 57: using relationship (1) $M_{Fd} + N_{Fd}(0.5h - d_1) = N_{Fd}(d - 0.4x) + F_{s2}(d - d_2) \frac{1}{F_{s1} = A_{s1}f_{sd}}$ $M_{Fd} = N_{Fd}(d-0.4x) - N_{Fd}(0.5h-d_1) + F_{s2}(d-d_2)$ with $d = h - d_1$ $M_{Fd} = N_{Fd} (h - d_1 - 0.4x - 0.5h + d_1) + F_{s2} (d - d_2)$ (2) $M_{Ed} = N_{Ed}(0.5h - 0.4x) + A_{s2}f_{vd}(d - d_2)$ resisting bending moment

 $M_{Rd} = N_{Ed}(0.5h - 0.4x) + A_{s2}f_{yd}(d - d_2)$

$x < x_y \stackrel{>}{\vdash} A_{s2}$ does not yield

simplified approach: F_c is located at the level of A_{s2}

 ΣM = 0 \rightarrow related to the A_{s2} axis:

$$M_{Ed} - N_{Ed}(0,5h - d_2) = F_{s1}(d - d_2)$$
(3)
$$M_{Ed} = A_{s1}f_{yd}(d - d_2) + N_{Ed}(0,5h - d_2)$$

resisting bending moment

 $M_{Rd} = A_{s1}f_{yd}(d-d_2) + N_{Ed}(0.5h-d_2)$

Case II: bending with prevailing compression - A_{s1} does not yield (eccentric compression with low eccentricity)

$$x > x_{lim} >> x_y \stackrel{>}{\vdash} A_{s2}$$
 yields

Procedure described in cpt. 6.4 (slides 12, 13) should be applied using $\sigma_c - \varepsilon_c \& \sigma_s - \varepsilon_s$ diagrams

In what follows, relationships between the stress in reinforcement A_{s1} and neutral axis position are used without the need for stress-strain diagram.

From triangles (red & black lines):

$$\varepsilon_{cu} = x_{\lim} \frac{\varepsilon_{yd}}{d - x_{\lim}} = x \frac{\varepsilon_{s1}}{d - x} \longrightarrow \varepsilon_{s1} = \frac{x_{\lim}}{x} \frac{d - x}{d - x_{\lim}} \varepsilon_{yd}$$
$$\sigma_{s1} = \frac{x_{\lim}}{x} \frac{d - x}{d - x_{\lim}} f_{yd} \text{ (tension)}$$

x > d

It is accepted that $\sigma_{\!s1}$ is directly proportional to neutral axis depth

$$\sigma_{s1} = 4 \frac{x - d}{d} f_{yd}$$
 (compression)

In view of the above, the stress in reinforcement A_{s1} is defined by the relationship:

$$\sigma_{s1} = f(x) \cdot f_{yd}$$

$$f(x) = \begin{cases} x_{\lim} (d-x)/x (d-x_{\lim}) & \text{for } x_{\lim} < x \le d \\ -4(x-d)/d & \text{for } d < x \le h \\ -1,0 & \text{for } x > h \end{cases}$$

NOTE: Minus stands for compression

$$\begin{split} \Sigma F &= 0 & & \\ N_{Ed} &= F_c + F_{s2} - F_{s1} & & \\ N_{Ed} &= 0.8bxf_{cd} + A_{s2}f_{yd} - A_{s1}\sigma_{s1} & & \\ N_{Ed} &= 0.8bxf_{cd} + A_{s2}(f_{yd} - \sigma_{s1}) & & \\ N_{Ed} &= 0.8bxf_{cd} + A_{s2}f_{yd}[1 - f(x)] & & \\ \end{split}$$

 $M_{Rd} = 0.8bx(d - 0.4x)f_{cd} + A_{s2}f_{yd}(d - d_2) - N_{Ed}(0.5h - d_1)$

	ololol Kennoreentent design							
	Input data	Output data $A_{s1} = A_{s2}$; x; and eventually σ_{s1}						
	M _{Ed} ; N _{Ed} ; b; h; f _{cd} ; f _{yd} ; c _{nom}							
$x = \frac{N_{Ed}}{0,8bf_{cd}} \le \xi_{lim} d - Case I$								
	$x \ge x_y$	$x < x_y$						
Fr A _{s1} =	From relationship (2) – slide 58: = $A_{s2} = \frac{M_{Ed} - N_{Ed}(0.5h - 0.4x)}{f_{yd}(d - d_2)}$	From relationship (3) slide 59: $A_{s1} = A_{s2} = \frac{M_{Ed} - N_{Ed}(0, 5h - d_2)}{f_{yd}(d - d_2)}$						
$x = \frac{N_{Ed}}{0.8bf_{cd}} > \xi_{lim} d - Case II$								
Solve the system of equations to have $A_{s1} = A_{s2}$								
2	$\Sigma F = 0$							
	$\Sigma \mathbf{M} = 0$ $\sigma_{s1} = \mathbf{f}(\mathbf{x}) \cdot \mathbf{f}_{yd}$							
The system of equations is solved step by step, choosing x, because it is a non-linear system.								

8.3.3. Reinforcement design

8.3.4. Cross section check

Input data	Output data				
M_{Ed} ; N_{Ed} ; b; h; f _{cd} ; f _{yd} ; $A_{s1} = A_{s2}$; c _{nom}	$\rm M_{\rm Rd}$; x; and eventually $\sigma_{\rm s1}$				

8.3.5. Alternative calculation tools

<u>http://www.library.upt.ro/index.html?cursuri</u> → File: 10_STALPI.pdf

Anexa 10.1 Nomograme pentru calculul stâlpilor cu secțiune dreptunghiulară

	Purposes of calculation \rightarrow	$\mathbf{A}_{\mathtt{s}1} = \mathbf{A}_{\mathtt{s}2}$	M _{Rd}
1	Input data	µ _{Ed} & ∨ _{Ed}	VEd & O
2	Output data	Wreq	µ _{Rd}
3	Result	$A_{s1} = A_{s2} = \omega_{req} bh f_{cd} / f_{yd}$	$M_{Rd} = \mu_{Rd}bh^2 f_{cd}$

Anexa 10.2 Tabele pentru calculul stâlpilor cu secțiune dreptunghiulară

$$\underbrace{b}_{l} \begin{bmatrix} A_{s} & A_{s} \end{bmatrix} \qquad A_{s1} = A_{s2} = A_{s} \qquad \qquad \nu = \frac{N_{Ed}}{bhf_{cd}} \qquad \mu = \frac{M_{Ed}}{bh^{2}f_{cd}} \qquad \omega = \frac{A_{s}f_{yd}}{bhf_{cd}} \qquad A_{s} = \omega bh \frac{f_{cd}}{f_{yd}}$$

	Purposes of calculation \rightarrow	$\mathbf{A}_{\mathtt{s}1} = \mathbf{A}_{\mathtt{s}2}$	M _{Rd}
1	Input data	µ _{Ed} & ∨ _{Ed}	VEd & O
2	Output data	Wreq	μ _{Rd}
3	Result	$A_{s1} = A_{s2} = \omega_{req} bhf_{cd}/f_{yd}$	$M_{Rd} = \mu_{Rd}bh^2 f_{cd}$

	Values 1000 μ for $\omega_{tot} =$									
V	0	0,20		Wreq	ω		ω		0,45	0,50
1,00				Î						
 ∨ _{Ed} re ∨ _{Ed}	inforcer M _{Rd}	ment desig	n>	1000µ _{Ed}	• 1000µ _{Rd}					
0	24									

8.4. BIAXIAL BENDING OF COLUMNS WITH RECTANGULAR CROSS SECTION

Independent design in each principal direction, disregarding biaxial bending, may be made as a first step.

Imperfections need to be taken into account only in the direction where they will have the most unfavourable effect.

8.4. BIAXIAL BENDING OF COLUMNS WITH RECTANGULAR CROSS SECTION

No further check is necessary if the slenderness ratios satisfy the following condition:

(4a)
$$0,5 \le \lambda_y / \lambda_z \le 2$$

and if the eccentricities e_y and e_z satisfy one the following conditions:

(4b)
$$\frac{e_y/h}{e_z/b} \le 0,2$$
 or $\frac{e_z/b}{e_y/h} \le 0,2$

b, *h* are the width and depth of the section

 λ_y , λ_z are the slenderness ratios I_0/i with respect to y- and z-axis respectively

 i_y , i_z are the radii of gyration with respect to y- and z-axis respectively

 $e_z = M_{Edy} / N_{Ed}$; eccentricity along z-axis

 $e_y = M_{Edz} / N_{Ed}$; eccentricity along y-axis

 M_{Edy} is the design moment about y-axis, including second order moment

 $M_{\rm Edz}$ is the design moment about z-axis, including second order moment

*N*_{Ed} is the design value of axial load in the respective load combination

Definition of eccentricities

 e_y and e_z

Graphical representation of the condition (4b)

If the condition of Expression (4) is not fulfilled, biaxial bending should be taken into account including the 2nd order effects in each direction

Procedure according to BS 8100, also accepted by IStructE

Column may be design for a single axis bending but with an equivalent bending moment as follows:

 $\beta_{\rm N} = 1 - N_{\rm Ed} / bhf_{\rm ck} \ge 0.3$

8.4.1. Basics of calculation

Reinforcement is distributed on all sides of the section

Force line is characterized by $~tg\delta = M_{Edz} \big/ M_{Edy} = e_{_y} \big/ e_{_z}$

 $\frac{y}{Meas}$ $\frac{y$

Calculation is based on the assumptions from chp. 6.1

Position of the neutral axis is selected in such a way that internal forces (namely $F_c+\Sigma F_{s2}$ and ΣF_{s1}) to be located on the line of forces

Failure is produced by:

- yielding of the most tensioned bars followed by crushing of compression concrete, according to pivot B;
- crushing of compression concrete without yielding of tension bars, according to pivot C;
- whatever is the way of failure, there are bars which are not yielding

INTERACTON SURFACE FOR COMPRESSION WITH BIAXIAL BENDING

Static analysis: N_{Ed} ; M_{Edy} ; M_{Edz} By vectorial summation results:

$$R_{Ed} = \sqrt{N_{Ed}^2 + M_{Edy}^2 + M_{Edz}^2} = \sqrt{N_{Ed}^2 + M_{Ed}^2}$$

Bearing capacity is: $R_{Rd} = \sqrt{N_{Rd}^2 + M_{Rdy}^2 + M_{Rdz}^2} = \sqrt{N_{Rd}^2 + M_{Rd}^2}$

The two vectors are in the same meridian plan ${\rm P}_{\delta}$

The cross section resists to loads if point 2 (corresponding to the vector R_{Ed}) is inside the interaction surface or overlapped on the point 1:

(5) $R_{Ed} \leq R_{Rd}$

8.4.2. Simplified procedure of calculation Load Contour Method

Simplified procedure, taking into account the interaction of bending moments M_{Edy} and M_{Edz} for a constant axial force N_{Ed} , may be used for calculation by hand

This method is suitable for structures located in seismic areas because the bending moments increase under constant gravitational load.

In this case, equation (5) becomes:

$$\sqrt{N_{Ed}^2 + M_{Ed}^2} \le \sqrt{N_{Rd}^2 + M_{Rd}^2}$$

(6) $M_{Ed} \leq M_{Rd}$

N

The simplified procedure is based on the replacement of actual curve of interaction, dependent on angle δ , with a simplified elliptic curve

Calculation procedure is safe because simplified curve is located inside the real one

 M_{Rdy0} – bearing capacity in uniaxial bending for N_{Ed} when $M_{Edz} = 0$ M_{Rdz0} – bearing capacity in uniaxial bending for N_{Ed} when $M_{Edy} = 0$

Unfavorable conclusion: due to biaxial bending there is a decreasing in uniaxial resistance

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$

Checking relationship (6) becomes:

(7)
$$\left(\frac{M_{Edy}}{M_{Rdy0}}\right)^a + \left(\frac{M_{Edz}}{M_{Rdz0}}\right)^a \le 1$$

$$\left(\frac{M_{Rdy}}{M_{Rdy0}}\right)^2 + \left(\frac{M_{Rdz}}{M_{Rdz0}}\right)^2 = 1$$

EXPONENT a

SR EN 1992-1-1:2004

$N_{Ed}/N_{Rd} =$	0,1	0,7	1,0
<i>a</i> =	1,0	1,5	2,0

$$N_{Rd} = bhf_{cd} + A_{s,tot}f_{yd}$$

	Bar arrangement					
N _{Ed}	A	B	С			
bhf _{cd}	4 bars, in the corner	more than 4 bars $A_{sy} \cong A_{sz}$	more than 4 bars $A_{sy} = (1, 52, 0)A_{sz}$			
0,1	1,60	1,70	1,75			
0,2	1,35	1,60	1,50			
0,3	1,25	1,55	1,40			
0,4	1,20	1,50	1,35			
0,5	1,20	1,45	1,35			
0,6	1,35	1,45	1,40			
0,7	1,55	1,50	1,50			
0,8	1,75	1,60	1,60			

 Exponent was evaluated on the basis of numerical analysis on the computer using general method (chp. 6.1).
 The exponent was determined in such a way that, for diagonal of the section, the simplified method to give the same result as the general method (chp. 6.1).

8.4.3. Cross section check

Input data	Output data		
b; h; A _{s,tot} ; N _{Ed} ; M _{Edy} ; M _{Edz} ; f _{cd} ; f _{yd} ; c _{nom}	Fulfillment of the condition (7)		

Section verification involves the following steps:

- design axial resistance of section: $N_{Rd} = A_c f_{cd} + A_{s,tot} f_{yd}$
- determination of the coefficient *a* depending on the ratio N_{Rd}/N_{Ed}
- establishing reinforcements $(A_{s1} = A_{s2})_y$ and $(A_{s1} = A_{s2})_z$; bars in the corners are considered for every direction
- calculation of resisting bending moment M_{Rdy} for N_{Ed} and A_{sy}
- calculation of resisting bending moment $M_{\textrm{Rdz}}$ for $N_{\textrm{Ed}}$ and $A_{\textrm{sz}}$

$$- \text{ checking condition } \left(\frac{M_{Edy}}{M_{Rdy0}}\right)^a + \left(\frac{M_{Edz}}{M_{Rdz0}}\right)^a \leq 1$$

8.4.4. Reinforcement calculation

Input data	Output data
b; h; N _{Ed} ; M _{Edy} ; M _{Edz} ; f _{cd} ; f _{yd} ; c _{nom}	A _{s,tot}

Reinforcement area is calculated for $M_{Rd} = M_{Ed}$, namely:

$$\left(\frac{M_{Edy}}{M_{Rdy0}}\right)^{a} + \left(\frac{M_{Edz}}{M_{Rdz0}}\right)^{a} \xrightarrow{=} 1 \xrightarrow{\rightarrow} \text{overlapping of points 1 and 2 (slide 79)}$$
There is a problem: two unknowns & one equation
$$M_{Rdy}; \text{ actually } (A_{s1} = A_{s2})_{y}$$

$$M_{Rdz}; \text{ actually } (A_{s1} = A_{s2})_{z}$$

Consequently, reinforcement calculation involves an infinity of solutions.

Additional relationship is needed between M_{Rdv} & M_{Rdz}

Between bearing capacities $M_{Rdy} \& M_{Rdz}$ to be the same ratio as between the bending moments $M_{Edv} \& M_{Edz}$:

$$\frac{M_{Rdy}}{M_{Rdz}} = \frac{M_{Edy}}{M_{Edz}}$$
$$\frac{M_{Edy}}{M_{Rdy}} = \frac{M_{Edz}}{M_{Rdz}}$$

In this case equation (7) becomes:

(8)
$$\left(\frac{M_{Edy}}{M_{Rdy}}\right)^a = \left(\frac{M_{Edz}}{M_{Rdz}}\right)^a \le 0.5$$

The calculation procedure is as follows:

- it is estimated A_{s,tot}
- $N_{Rd} = A_c f_{cd} + A_{s,tot}$
- choose exponent *a* depending on N_{Ed}/N_{Rd}

- according to (8), choose
$$\Omega = \left(\frac{M_{Edy}}{M_{Rdy}}\right)^a = \left(\frac{M_{Edz}}{M_{Rdz}}\right)^a \le 0.5$$

- $\frac{M_{Edy}}{M_{Rdy}} = \frac{M_{Edz}}{M_{Rdz}} = \sqrt[a]{\Omega}$

- required bearing capacity for y axis: $M_{Rdy} = M_{Edy} / \sqrt[a]{\Omega}$
- required bearing capacity for z axis: $M_{Rdz} = M_{Edz} / \sqrt[a]{\Omega}$

- calculation of reinforcement $(A_{s1} = A_{s2})_y$ shall be made for N_{Ed} and $M_{Edy}/\sqrt[a]{\Omega}$ in order to achieve required M_{Rdy}
- calculation of reinforcement $(A_{s1} = A_{s2})_z$ shall be made for N_{Ed} and $M_{Edz}/\sqrt[a]{\Omega}$ in order to achieve required M_{Rdz}
- bar detailing
- if $(A_{s1} = A_{s2})_y$ is rounded up then $(A_{s1} = A_{s2})_z$ is rounded down
- with $A_{s,tot\;eff}$ compute the new $N_{Rd};$ if necessary calculation is made again

Advantage: biaxial bending is divided in two uniaxial bending with increased moments

Note: using exponent from former romanian code no recalculation is required because exponent a depends only on N_{Ed} /bhf_{cd}

Bars are evenly distributed along the section contour

Reinforcement is considered evenly distributed on the contour if in the section there are at least six bars

Calculation is based on the assumptions from chp. 6.1

In case of ring-shaped (annular) section it is recommended that between the inner radius and the outer radius to have the following relation:

$$r_i \ge 0.5r_e$$

Failure is produced by:

- yielding of the most tensioned bars followed by crushing of compression concrete;
- crushing of compression concrete without yielding of tension bars;
- whatever is the way of failure, there are bars which are not yielding.

Approximate evaluation of reinforcement for $0,15 \le \omega_{tot} \le 1,0$

$$A_{s,tot} = \omega_{tot} A_c \frac{f_{cd}}{f_{yd}}$$

with:

$$\omega_{tot} = \beta_1 \mu + \beta_2$$

$$\mu = M_{Ed} / A_c D f_{cd}$$

$$A_c = 0.25 \pi D^2$$

 β_1 , β_2 - coefficients depending on $v = N_{Ed}/A_c f_{cd}$

Tools for current calculations

<u>http://www.library.upt.ro/index.html?cursuri</u> → File: 10_STALPI.pdf

Anexa 10.4. Tabele pentru calculul stâlpilor cu secțiune circulară

$$\underbrace{D \int A_{s,tot}}_{\uparrow} A_{s,tot} = \frac{N_{Ed}}{A_c f_{cd}} \quad \mu = \frac{M_{Ed}}{A_c D f_{cd}} \quad \omega_{tot} = \frac{A_{s,tot} f_{yd}}{A_c f_{cd}} \quad A_{s,tot} = \omega_{tot} A_c \frac{f_{cd}}{f_{yd}}$$

	Purpose of calculation \rightarrow	A _{s,tot}	M _{Rd}
1	Input data	$\mu_{Ed} \& \nu_{Ed}$	ν _{Ed} & ω
2	Output data	ω _{req}	μ _{Rd}
3	Result	$A_{s,tot} = \omega_{req} A_c f_{cd} / f_{yd}$	$M_{Rd} = \mu_{Rd} A_c D f_{cd}$

	Values 1000 μ for $\omega_{tot} =$									
	0	0,20		Wreq	ω		ω		0,45	0,50
1,00				î						
 v _{Ed} r v _{Ed}	einforce M _{Rd}	ment desig	m>	- 1000μ _{Εđ}	1000µ _{Rd}					
0										

Anexa 10.5 Tabele pentru calculul stâlpilor cu secțiune inelară

	Purpose of calculation \rightarrow	A _{s,tot}	M _{Rd}
1	Input data	$\mu_{Ed} \& \nu_{Ed}$	ν _{Ed} & ω
2	Output data	ω _{req}	μ_{Rd}
3	Result	$\mathbf{A}_{s,tot} = \boldsymbol{\omega}_{req} \mathbf{A}_c \mathbf{f}_{cd} / \mathbf{f}_{yd}$	$M_{Rd} = \mu_{Rd} A_c D f_{cd}$

EN 1992-1-1:2004 SR EN 1992-1-1:2006 National Annex SR EN 1992-1-1/NB:2008 P100-1/2013 \rightarrow very specific provisions & highly severe

ANCHORAGE & BAR LAPS \rightarrow CHP. 2.2

CROSS SECTION DIMENSIONS

Usually $h/b \le 2,5$, maximum value being 4

The minimum size of the rectangular cross section is 300 mm The minimum diameter of circular cross section is 300 mm

Usually sizes are multiples of 50 mm

LONGITUDINAL REINFORCEMENTS

 $\phi_{\min} = 8 \text{ mm}; \dots \text{ NA: 12 mm}; \dots \text{ in romanian practice w } \hat{1} \text{ 14 mm}$ $A_{s \min} = \max \begin{cases} 0,1N_{Ed}/f_{yd} \\ 0,2\%A_c; \dots \text{ NA: } 0,4\%A_c \end{cases}$ $A_{s \max} = 4\%A_c$

max'(b;h)

TRANSVERSAL REINFORCEMENTS

shear force;
 compressed concrete confinement;
 no buckling of longitudinal bars between stirrups

Weak stirrup = small ϕ & large distance between stirrups

Weak stirrups: - buckling of longitudinal bars between stirrups -no confinement of compressed concrete

Buckling in lap zone with weak stirrups

San Fernando, 1971

High V_{Ed} with weak stirrups (0,6 m) 96

Every longitudinal bar placed in a corner of the section should be held by transverse reinforcements

No bar should be further than 150 mm from a restrained bar (in corner of stirrup; connected to a link)

Due to compressive force there is longitudinal shortening & transversal swelling of concrete

Red curves: deformed shape of the stirrup produced by swelling of concrete

Arrows show bars in tension due to swelling of concrete

Link in case **A** has contribution to confinement

Link in case **B** has no contribution to confinement

stirrup

link

